DEPARTMENT OF THE NAVY NAVAL FACILITIES ENGINEERING COMMAND 30 September 1999 ********************** ## SECTION TABLE OF CONTENTS #### DIVISION 09 - FINISHES #### SECTION 09967 #### COATING OF STEEL WATERFRONT STRUCTURES #### 09/99 # PART 1 GENERAL - 1.1 REFERENCES - 1.2 SUBMITTALS - 1.3 ENVIRONMENTAL CONDITIONS - 1.4 SAFETY AND HEALTH PRECAUTIONS # PART 2 PRODUCTS - 2.1 COATING SYSTEMS - 2.1.1 Coating - 2.1.1.1 Epoxy-Polyamide - 2.1.1.2 Coal Tar Epoxy-Polyamide ## PART 3 EXECUTION - 3.1 CLEANING AND PREPARATION OF SURFACES - 3.1.1 Solvent Cleaning - 3.1.2 Blast Cleaning - 3.2 PROPORTIONING AND MIXING OF COATING SYSTEM - 3.2.1 Proportioning of Epoxy-Polyamide System - 3.2.2 Proportioning of Coal Tar Epoxy-Polyamide System - 3.2.3 Mixing of Epoxy-Polyamide System - 3.2.4 Mixing of Coal Tar Epoxy-Polyamide System - 3.3 COATING APPLICATION - 3.3.1 General - 3.3.1.1 Application Method for Epoxy-Polyamide System - 3.3.1.2 Application Method for Coal Tar Epoxy-Polyamide System - 3.3.2 Repair of Defects - 3.3.3 Three-Coat Epoxy-Polyamide System - 3.3.4 Two-Coat Coal Tar Epoxy-Polyamide System - 3.3.5 Dry Film Thickness - 3.4 SURFACES TO BE COATED - 3.4.1 Steel Waterfront Construction - 3.5 FIELD TESTS - 3.5.1 Holiday Testing - 3.5.2 Dry Film Thickness - -- End of Section Table of Contents -- NFGS-09967C ## COATING OF STEEL WATERFRONT STRUCTURES | ****** | ***** | ******* | ****** | | |--|-----------------|--------------------------|------------|--| | * | | | * | | | * Preparing Activity: 1 | NAVFACENGCOMHQ | (CODE 15G) | * | | | * | | | * | | | * Typed Na | ame & Reg. | Signature | Date * | | | * | _ | _ | * | | | * | | | * | | | * Prepared by: Hal Okh | holm, R.A. | /s/ | 02/20/99 * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * Approved for NAVFAC: | /s/ | | 02/20/99 * | | | * | Carl E. Kerster | n, R.A. | * | | | * | | | * | | | * Any changes or revis: | ions to this do | cument since the date of | f the * | | | * original approval for NAVFAC, have been performed by the Guide * | | | | | | * Specifications Divis: | ion (Code 15G). | | * | | | * | | | * | | | * Changes or Revisions | | | * | | | * Approved for NAVFAC: | /s/ | | 09/30/99 * | | | * | Carl E. Kerster | n, R.A. | * | | | * | | | * | | | ******* | ****** | ******* | ****** | | | AMSC N/A | | | AREA FACR | | **************************** SECTION 09967 # COATING OF STEEL WATERFRONT STRUCTURES 09/99 ************************* NOTE: This guide specification covers requirements for coating steel-sheet piling and other steel waterfront structures. Also consider using cathodic protection in addition to coating. See NAVFAC MIL-HDBK 1004/10, "Electrical Engineering Cathodic Protection." ********************** ******************** NOTE: This revision "C" to NFGS-09967 amends the issue dated 20 February 1999 by revising the submittal article to comply with the agreement reached by the SPECSINTACT Tri-Agency Committee. PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. #### AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM D 1186 (1993) Nondestructive Measurement of Dry Film Thickness of Nonmagnetic Coatings Film inickness of Nonmagnetic Coatings Applied to a Ferrous Base ASTM E 376 (1996) Measuring Coating Thickness by Magnetic-Field or Eddy-Current (Electromagnetic) Test Methods # STEEL STRUCTURES PAINTING COUNCIL (SSPC) SSPC PS 11.01 (1991) Black (or Dark Red) Coal Tar Epoxy-Polyamide Painting System SSPC PS 13.01 (1991) Epoxy-Polyamide Painting System SSPC SP 1 (1982) Solvent Cleaning SSPC SP 10 (1994) Near-White Blast Cleaning SSPC Paint 16 (1991) Coal Tar Epoxy-Polyamide Black (or Dark Red) Paint SSPC Paint 22 (1991) Epoxy-Polyamide Paints (Primer, Intermediate, and Topcoat) #### 1.2 SUBMITTALS ********************* NOTE: Where a "G" in submittal tags follows a submittal item, it indicates Government approval for that item. Add "G" in submittal tags following any added or existing submittal items deemed sufficiently critical, complex, or aesthetically significantly to merit approval by the Government. Submittal items not designated with a "G" will be approved by the QC organization. ************************ Submit the following in accordance with Section 01330, "Submittal Procedures." SD-07 Certificates [Epoxy-polyamide] [Coal tar epoxy-polyamide] #### 1.3 ENVIRONMENTAL CONDITIONS *********************** NOTE: If induction can occur in a warm area (above 21 degrees C 70 degrees F), then epoxy-polyamide can be applied at a job site having an ambient temperature as low as 4 degrees C 40 degrees F. Coal tar epoxy-polyamide should be applied when the ambient temperature is above 10 degree C 50 degrees F. ********************** Start work only when ambient and curing temperatures are within limits of coating manufacturer's recommendations and at least 3 degrees C 5 degrees F above dew point temperature. ## 1.4 SAFETY AND HEALTH PRECAUTIONS Materials listed in this section contain coal tar pitch volatiles, which are toxic. Follow safety procedures as recommended by manufacturer. Work in a well ventilated area. Provide, and require workers to use, impervious clothing, gloves, face shields (200 mm8 inch minimum), and other appropriate protective clothing necessary to prevent eye and skin contact with coating materials. Keep coatings away from heat, sparks and flame. ## PART 2 PRODUCTS ## 2.1 COATING SYSTEMS ## 2.1.1 Coating *********************** NOTE: Advantages of epoxy-polyamide are that it can be applied at lower temperatures under certain conditions and that the three-coat application lessens the possibility of pinholes. Disadvantage is that it has a longer induction time than coal tar epoxy-polyamide. Advantages of coal tar epoxy-polyamide are that two-coats will result in 0.40 mm 16 mils thickness, it has better water resistance, and is self-priming. Disadvantages are that it gets brittle on prolonged sunlight exposure, is more hazardous to health and it comes only in black or dark red color. It is important to check local air pollution control district regulations before selecting the coating. Regulations are constantly changing, particularly regarding volatile organic compounds (VOC) limits. *********************** Provide catalyst component[s] for coating[s] specific for resin component[s]. Use thinners which are compatible with the coating. ********************** NOTE: Choose either "Epoxy-Polyamide" or "Coal Tar Epoxy-Polyamide." *********************** ## [2.1.1.1 Epoxy-Polyamide a. System: SSPC PS 13.01 b. Paints: SSPC Paint 22, Primer, Intermediate and Top Coats ##][2.1.1.2 Coal Tar Epoxy-Polyamide a. System: SSPC PS 11.01 b. Paints: SSPC Paint 16 [Black] [Dark Red] 1PART 3 EXECUTION 3.1 CLEANING AND PREPARATION OF SURFACES ## 3.1.1 Solvent Cleaning ************************* NOTE: SSPC SP 1, "Solvent Cleaning" covers cleaning using simple solvents, solvent wiping, immersion in solvent, solvent spray, vapor degreasing, steam cleaning with and without detergent, emulsion cleaning, chemical paint stripping, and alkaline cleaners. If local air pollution control districts restrict use of any of these systems, specify which | | one is to be used.
************************************ | |--|---| | SSPC SP 1.
by solvent | Remove visible oil, grease, and drawing and cutting compounds cleaning. | | 3.1.2 Blast | Cleaning | | 1
T
6 | ************************************** | | near-white
blowing wit | After solvent cleaning, complete surface preparation by blast cleaning. Remove residual dust from blasted surface by h dry, oil-free air, vacuuming, or sweeping. Provide surface at least [0.0375] [0.0625] mm [1 1/2] [2 1/2]-milthickness. | | 3.2 PROPORT | CIONING AND MIXING OF COATING SYSTEM | | [3.2.1 Prop | portioning of Epoxy-Polyamide System | | | **************** | | •
• | NOTE: Choose this paragraph or the paragraph below entitled "Proportioning of Coal Tar Epoxy-Polyamide System." | | ******** Epoxy-polya pigmented p Mix both co when doing limits enac allowed and improve app | entitled "Proportioning of Coal Tar Epoxy-Polyamide
System." | | ********* Epoxy-polya pigmented p Mix both co when doing limits enac allowed and improve app ethylene gl coating. | entitled "Proportioning of Coal Tar Epoxy-Polyamide System." *********************************** | ************************][3.2.3 Mixing of Epoxy-Polyamide System Mix components of coating by power stirring until a smooth, uniform consistency results. Stir coating periodically during its induction period. Follow Table 1 for induction time and pot life of mixed batches. ## TABLE 1 ## JOB SITE AMBIENT TEMPERATURE AND INDUCTION TIME FOR EPOXY-POLYAMIDE SYSTEM | Ambient Temperature
Degrees C | Induction Time
(in hours) | | | |----------------------------------|------------------------------|--|--| | 4.4 to 10.0 | 2 at 21.1 degrees C | | | | 10.0 to 15.6 | 2 | | | | 15.6 to 21.1 | 1 to 1-1/2 | | | | 21.1 and above | 1/2 to 1 | | | TABLE 1 ## JOB SITE AMBIENT TEMPERATURE AND INDUCTION TIME FOR EPOXY-POLYAMIDE SYSTEM | Ambient Temperature
Degrees F | Induction Time
(in hours) | | | |----------------------------------|------------------------------|--|--| | 40 to 50 | 2 at 70 degrees F | | | | 50 to 60 | 2 | | | | 60 to 70 | 1 to 1-1/2 | | | | 70 and above | 1/2 to 1 | | | #][3.2.4 Mixing of Coal Tar Epoxy-Polyamide System Power stir components to a smooth, uniform consistency. Stir coating periodically during induction period. Follow coating manufacturer's requirements for induction time and pot life of mixed batches. #]3.3 COATING APPLICATION ## 3.3.1 General Apply primer coating to dry surfaces not more than 4 hours after near-white blast cleaning. Apply coats of each system so that finished surfaces are free from runs, sags, brush marks and variations in color. ## [3.3.1.1 Application Method for Epoxy-Polyamide System | ****** | ******************* | |---------|--| | NOTE: | Choose this paragraph or the paragraph below | | entitle | ed "Application Method for Coal Tar | | Epoxy- | Polyamide System." | Allow previous coat to dry to tack-free condition but not more than 72 hours before applying next coat. If more than 72 hours elapses between coats, clean surface, apply a 0.05 mm 2 mil wet film thickness of previous coat, allow to cure to a tacky film, and apply a full thickness of next coat. [3.3.1.2 Application Method for Coal Tar Epoxy-Polyamide System Unless otherwise specified by manufacturer's recommendations, do not allow drying time between coats to exceed 72 hours. Under conditions of direct sunlight or elevated ambient temperatures of 32 degrees C 90 degrees F or greater, limit intercoat drying period to a maximum of 24 hours. ##]3.3.2 Repair of Defects Repair detected coating holidays, thin areas, and exposed areas damaged prior to or during installation by surface treatment and application of additional coating or by manufacturer's recommendations. Allow a period of at least 72 hours to pass following final coat before placing in immersion service. [3.3.3 Three-Coat Epoxy-Polyamide System | ***** | ***** | ***** | ***** | ***** | ***** | ***** | |-------|---------|------------|------------|--------------|-------------|--------| | NC | OTE: C | hoose this | s paragrap | h or the par | ragraph bel | ow | | er | ntitled | "Two-Coat | Coal Tar | Epoxy-Polya | amide Syste | m." | | ***** | ***** | ****** | ****** | ****** | ****** | ****** | | | | | | | | | NOTE: Each formula of epoxy polyamide must be applied at about 0.1375 mm 5 1/2 mil wet film thickness to obtain 0.075 mm 3 mil dry film thickness. A greater thickness is required if coating is thinned. The practical coverage rate of each coat at this thickness is about 5 square meters/liter 200 square feet/gallon. Formula 150 should be used as prime coat with other colors used for other two coats. Apply each coat at a dry film thickness of between 0.075 mm and 0.10 mm 3 mils and 4 mils. ************************* *****************************][3.3.4 Two-Coat Coal Tar Epoxy-Polyamide System NOTE: Each unthinned coat of coal tar epoxy-polyamide must be applied at minimum of 0.275 mm 11 mils to obtain 0.20 mm 8 mils dry film thickness. A greater thickness is required if coating is thinned. The practical coverage rate for each coat is about 3 square meters/liter 120 square Apply each coat at a dry film thickness of not less than 0.20 mm 8 mils.] 3.3.5 Dry Film Thickness Provide total system minimum dry film thickness of [0.225] [0.40] mm [9] [16] mils. Measure using a magnetic gage. ## 3.4 SURFACES TO BE COATED ## 3.4.1 Steel Waterfront Construction [Unless otherwise stated,] coat steel work. ## 3.5 FIELD TESTS [Conduct testing in presence of Contracting Officer.] # 3.5.1 Holiday Testing Prior to installation, test for holidays in total coating system. Use a low-voltage holiday detector of less than 90 volts in accordance with manufacturer's instructions. After repair of holidays by surface treatment and application of additional coating or by manufacturer's recommendation, retest with a low-voltage holiday detector. ## 3.5.2 Dry Film Thickness After repair of holidays, measure dry film thickness using a magnetic dry film thickness gage in accordance with ASTM D 1186 and ASTM E 376. Re-measure after an additional coat is applied, and add it to meet minimum thickness requirements. ************************ NOTE: Suggestions for improvement of this specification will be welcomed using the Navy "Change Request Forms" subdirectory located in SPECSINTACT in Jobs or Masters under "Forms/Documents" directory or DD Form 1426. Suggestions should be forwarded to: Officer In Charge Seabee Logistics Center NAVFAC 15G/SLC 46 4111 San Pedro Street Port Hueneme, CA 93043-4410 FAX: (805) 985-6465/982-5196 or DSN 551-5196 -- End of Section --